Thesis title: Molecular Structural Insights of Polyglutamine-rich Amyloid-like Fibrils using UV Resonance Raman Spectroscopy
Graduation date: June 2016
MBSB PhD Advisor: Dr Sanford Asher (Dept. Chemistry; University of Pittsburgh)
Research Interests:
David worked on the development of UV Resonance Raman (UVRR) spectroscopic methods to study amyloid fibril structure and aggregation kinetics. UVRR is exquisitely sensitive to protein/peptide conformations and can be used to selectively probe the electronic structure of UV-absorbing chromophores.
His my main research focus was the aggregation mechanism(s) of polyglutamine (polyQ) peptides and how they lead to amyloid fibril formation. There are at least nine neurodegenerative diseases associated with expansions in polyQ repeat segments of proteins. These simple polyQ peptides are useful model systems for studying the fundamental biophysics of larger, more complicated polyQ rich protein systems. Another focus was on the development of instrumentation for use in studying new biological systems with UVRR. For this, he worked on creating a high-resolution, high-throughput UV double monochromoter to study biologicals with ~200 nm-excited UVRR and on refurbishing a picosecond Nd:YAG laser so that it can directly probe picosecond dynamics of model peptides and organic molecules.
Current location: postdoctoral researcher in the Frontiera lab at the University of Minnesota.
Education:
B.S., Molecular Biology/Biochemistry, University of Pittsburgh, 2009
Ph.D., Molecular Biophysics & Structural Biology, University of Pittsburgh, 2016
Publications:
- Levine AB, Punihaole D, Levine TB (2012) Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology 2012;122:55-68
- Xiong, K., D. Punihaole, & Asher, S.A. (2012). "UV Resonance Raman Spectroscopy Monitors Polyglutamine Backbone and Side Chain Hydrogen Bonding and Fibrillization." Biochemistry 51(29): 5822-5830.
- Cai Z, Zhang JT, Xue F, Hong Z, Punihaole D, Asher SA. 2D photonic crystal protein hydrogel coulometer for sensing serum albumin ligand binding. Anal Chem. 2014; 86(10):4840-7
- Punihaole, D.; Jakubek, R. S.; Dahlburg, E. M. ; Hong, Z.; Myshakina, N. S.; Geib, S.; Asher, S. A. UV Resonance Raman Investigation of the Aqueous Solvation Dependence of Primary Amide Vibrations. J. Phys. Chem. B. 119(10):3931-9
- Punihaole D, Hong Z, Jakubek RS, Dahlburg EM, Geib S, Asher SA. (2015) Glutamine and Asparagine Side Chain Hyperconjugation-Induced Structurally Sensitive Vibrations. J Phys Chem B. 119(41):13039-51
- Cai Z, Kwak DH, Punihaole D, Hong Z, Velankar SS, Liu X, Asher SA. (2015) A Photonic Crystal Protein Hydrogel Sensor for Candida albicans. Angew Chem Int Ed Engl. 54(44):13036-40
- Punihaole D, Workman RJ, Hong Z, Madura JD, Asher SA. (2016) Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure. J Phys Chem B. 120(12):3012-26
- Sharma B, Cardinal MF, Ross MB, Zrimsek AB, Bykov SV, Punihaole D, Asher SA, Schatz GC, Van Duyne RP. (2016) Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Lett. 2016 Dec 14;16(12):7968-7973.
- Punhaole D, Jakubek RS, Workman RJ, Marbella LE, Campbell P, Madura JD, Asher SA. (2017) Moomeric Polyglutamine Structures That Evolve into Fibrils. J Phys Chem B. 2017; 121(24): 5953-5967
- Punihaole D, Jakubek RS, Workman RJ, Asher SA. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils. J Phys Chem Lett. 2018;9(8):1944-1950